skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dehaan, Kenneth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the past decade, there have been great advancements in radio frequency sensor technology for human–computer interaction applications, such as gesture recognition, and human activity recognition more broadly. While there is a significant amount of study on these topics, in most cases, experimental data are acquired in controlled settings by directing participants what motion to articulate. However, especially for communicative motions, such as sign language, such directed data sets do not accurately capture natural, in situ articulations. This results in a difference in the distribution of directed American Sign Language (ASL) versus natural ASL, which severely degrades natural sign language recognition in real‐world scenarios. To overcome these challenges and acquire more representative data for training deep models, the authors develop an interactive gaming environment, ChessSIGN, which records video and radar data of participants as they play the gamewithout any external direction. The authors investigate various ways of generating synthetic samples from directed ASL data, but show that ultimately such data does not offer much improvement over just initialising using imagery from ImageNet. In contrast, an interactive learning paradigm is proposed by the authors in which model training is shown to improve as more and more natural ASL samples are acquired and augmented via synthetic samples generated from a physics‐aware generative adversarial network. The authors show that the proposed approach enables the recognition of natural ASL in a real‐world setting, achieving an accuracy of 69% for 29 ASL signs—a 60% improvement over conventional training with directed ASL data. 
    more » « less